Asignaturas

Asignaturas

Más

Exercícios Resolvidos: Operações com Números Inteiros e Valor Absoluto

Ver

Exercícios Resolvidos: Operações com Números Inteiros e Valor Absoluto

Aqui está o resumo otimizado em português:

Os números inteiros são fundamentais na matemática, incluindo números positivos, negativos e zero. Este guia aborda operações básicas e propriedades dos números inteiros, focando em:

  • Valor absoluto e números opostos
  • Ordenação de números inteiros
  • Operações de adição, subtração, multiplicação e divisão
  • Regras de sinais para multiplicação e divisão
  • Potências de números inteiros e suas propriedades

• O conjunto dos números inteiros é representado por Z = {…, -3, -2, -1, 0, 1, 2, 3, …}
• Os números inteiros são usados para expressar temperaturas negativas, dívidas, altitudes, etc.
• É importante entender a ordenação dos números inteiros na reta numérica

7/3/2023

3414

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Properties of Exponents

This page covers the fundamental properties of exponents, which are crucial for simplifying and manipulating expressions with powers.

Key properties:

  1. Any number raised to the power of 1 equals itself
  2. Any number raised to the power of 0 equals 1
  3. Product of powers with the same base: a^n · a^m = a^(n+m)
  4. Quotient of powers with the same base: a^n ÷ a^m = a^(n-m)
  5. Power of a product: (a · b)^n = a^n · b^n
  6. Power of a quotient: (a ÷ b)^n = a^n ÷ b^n
  7. Power of a power: (a^n)^m = a^(n·m)

Example:

  • 2² · 2³ = 2^(2+3) = 2⁵
  • 2⁵ ÷ 2³ = 2^(5-3) = 2²
  • (3² · 2²) = 3² · 2² = 6²

Highlight: These properties are essential for solving potencias y raíces ejercicios resueltos (solved exponent and root exercises) efficiently.

The page includes practice problems to reinforce understanding of these properties.

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

Exponents and Powers with Integers

This page introduces the concept of exponents and powers as they apply to integers.

Key concepts:

  • Definition of exponents
  • Calculating powers of integers
  • Rules for signs with even and odd exponents

Definition: An exponent represents repeated multiplication of the base number by itself.

Example:

  • 2³ = 2 · 2 · 2 = 8
  • (-2)³ = (-2) · (-2) · (-2) = -8
  • (-2)⁴ = (-2) · (-2) · (-2) · (-2) = 16

Highlight: For negative bases, even exponents result in positive answers, while odd exponents result in negative answers.

The page includes exercises to practice writing repeated multiplications as powers and calculating the values of integer powers.

These concepts are essential for understanding potencias y raíces ejercicios (exponents and roots exercises) in later mathematics courses.

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

Introduction to Integers

This page introduces the concept of números enteros (integers) and their representation on a number line.

Integers are defined as the set of whole numbers including positive, negative, and zero: Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}

Key concepts covered:

  • Ordering integers on a number line
  • Absolute value of integers
  • Opposite (additive inverse) of integers

Definition: The absolute value of a number is its distance from zero on the number line, regardless of sign.

Example:

  • |6| = 6
  • |-6| = 6

Exercises are provided to practice associating real-world scenarios with positive and negative integers, as well as locating integers on a number line.

Highlight: Understanding absolute value and opposites is crucial for working with operaciones con números enteros (operations with integers).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

Multiplication and Division of Integers

This page covers the rules for multiplying and dividing integers, known as the "rule of signs."

Key concepts:

  • Multiplication of integers
  • Division of integers
  • Combining operations with parentheses

Definition: Rule of signs for multiplication and division:

  • Positive × Positive = Positive
  • Negative × Negative = Positive
  • Positive × Negative = Negative
  • Negative × Positive = Negative

Example:

  • (+4) × (+2) = +8
  • (-4) × (-2) = +8
  • (+4) × (-2) = -8
  • (-4) × (+2) = -8

The page includes practice exercises combining multiplication, division, addition, and subtraction of integers.

Highlight: Understanding the order of operations (PEMDAS) is crucial for solving complex operaciones combinadas con opuestos y valor absoluto (combined operations with opposites and absolute value).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

Complex Integer Operations

This page delves into more complex operations involving integers, including the use of parentheses and multiple operations.

Key concepts:

  • Solving multi-step integer problems
  • Applying order of operations (PEMDAS)
  • Using parentheses to group operations

Example: 5 · [11 - 4 - (11 - 7)] = 5 · [11 - 4 - 4] = 5 · (11 - 8) = 5 · 3 = 15

The page provides several challenging exercises that combine various integer operations, requiring careful attention to order of operations and grouping.

Highlight: These problems are excellent practice for ejercicios de números enteros pdf con soluciones (integer exercises with solutions in PDF format), as they cover a wide range of operation combinations.

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

Ordering and Comparing Integers

This page focuses on ordering integers and performing basic addition and subtraction operations.

Key concepts:

  • Ordering integers from least to greatest
  • Evaluating true/false statements about integer relationships
  • Adding and subtracting integers

Example: Ordering integers from least to greatest: -24 < -13 < -7 < -1 < 0 < +1 < +5 < +8 < +10

Several practice exercises are provided for mental calculation of integer addition and subtraction.

Highlight: When adding integers with different signs, subtract their absolute values and keep the sign of the larger number.

Vocabulary:

  • Suma (addition)
  • Resta (subtraction)

These concepts are fundamental for more advanced operaciones con números enteros 1 ESO (operations with integers in 1st year of secondary education).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

Practice Exercises

This page provides a comprehensive set of practice exercises covering all the concepts learned in the unit on integers and exponents.

Exercise types include:

  • Basic integer operations
  • Complex multi-step problems
  • Exponent calculations
  • Application of exponent properties

Example: Calculate step by step: 10 ÷ [8 - 12(11 - 9)] = 10 ÷ [8 - 12 · 2] = 10 ÷ (8 - 24) = 10 ÷ (-16) = -5/8

These exercises are designed to reinforce understanding and prepare students for more advanced operaciones con números enteros 2 ESO (operations with integers in 2nd year of secondary education).

Highlight: Practicing these exercises will help students develop proficiency in ejercicios números enteros 1 ESO pdf (integer exercises for 1st year of secondary education in PDF format).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ver

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

13 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.

Exercícios Resolvidos: Operações com Números Inteiros e Valor Absoluto

Aqui está o resumo otimizado em português:

Os números inteiros são fundamentais na matemática, incluindo números positivos, negativos e zero. Este guia aborda operações básicas e propriedades dos números inteiros, focando em:

  • Valor absoluto e números opostos
  • Ordenação de números inteiros
  • Operações de adição, subtração, multiplicação e divisão
  • Regras de sinais para multiplicação e divisão
  • Potências de números inteiros e suas propriedades

• O conjunto dos números inteiros é representado por Z = {…, -3, -2, -1, 0, 1, 2, 3, …}
• Os números inteiros são usados para expressar temperaturas negativas, dívidas, altitudes, etc.
• É importante entender a ordenação dos números inteiros na reta numérica

7/3/2023

3414

 

2° ESO

 

Matemáticas

876

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Properties of Exponents

This page covers the fundamental properties of exponents, which are crucial for simplifying and manipulating expressions with powers.

Key properties:

  1. Any number raised to the power of 1 equals itself
  2. Any number raised to the power of 0 equals 1
  3. Product of powers with the same base: a^n · a^m = a^(n+m)
  4. Quotient of powers with the same base: a^n ÷ a^m = a^(n-m)
  5. Power of a product: (a · b)^n = a^n · b^n
  6. Power of a quotient: (a ÷ b)^n = a^n ÷ b^n
  7. Power of a power: (a^n)^m = a^(n·m)

Example:

  • 2² · 2³ = 2^(2+3) = 2⁵
  • 2⁵ ÷ 2³ = 2^(5-3) = 2²
  • (3² · 2²) = 3² · 2² = 6²

Highlight: These properties are essential for solving potencias y raíces ejercicios resueltos (solved exponent and root exercises) efficiently.

The page includes practice problems to reinforce understanding of these properties.

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Exponents and Powers with Integers

This page introduces the concept of exponents and powers as they apply to integers.

Key concepts:

  • Definition of exponents
  • Calculating powers of integers
  • Rules for signs with even and odd exponents

Definition: An exponent represents repeated multiplication of the base number by itself.

Example:

  • 2³ = 2 · 2 · 2 = 8
  • (-2)³ = (-2) · (-2) · (-2) = -8
  • (-2)⁴ = (-2) · (-2) · (-2) · (-2) = 16

Highlight: For negative bases, even exponents result in positive answers, while odd exponents result in negative answers.

The page includes exercises to practice writing repeated multiplications as powers and calculating the values of integer powers.

These concepts are essential for understanding potencias y raíces ejercicios (exponents and roots exercises) in later mathematics courses.

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Introduction to Integers

This page introduces the concept of números enteros (integers) and their representation on a number line.

Integers are defined as the set of whole numbers including positive, negative, and zero: Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}

Key concepts covered:

  • Ordering integers on a number line
  • Absolute value of integers
  • Opposite (additive inverse) of integers

Definition: The absolute value of a number is its distance from zero on the number line, regardless of sign.

Example:

  • |6| = 6
  • |-6| = 6

Exercises are provided to practice associating real-world scenarios with positive and negative integers, as well as locating integers on a number line.

Highlight: Understanding absolute value and opposites is crucial for working with operaciones con números enteros (operations with integers).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Multiplication and Division of Integers

This page covers the rules for multiplying and dividing integers, known as the "rule of signs."

Key concepts:

  • Multiplication of integers
  • Division of integers
  • Combining operations with parentheses

Definition: Rule of signs for multiplication and division:

  • Positive × Positive = Positive
  • Negative × Negative = Positive
  • Positive × Negative = Negative
  • Negative × Positive = Negative

Example:

  • (+4) × (+2) = +8
  • (-4) × (-2) = +8
  • (+4) × (-2) = -8
  • (-4) × (+2) = -8

The page includes practice exercises combining multiplication, division, addition, and subtraction of integers.

Highlight: Understanding the order of operations (PEMDAS) is crucial for solving complex operaciones combinadas con opuestos y valor absoluto (combined operations with opposites and absolute value).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Complex Integer Operations

This page delves into more complex operations involving integers, including the use of parentheses and multiple operations.

Key concepts:

  • Solving multi-step integer problems
  • Applying order of operations (PEMDAS)
  • Using parentheses to group operations

Example: 5 · [11 - 4 - (11 - 7)] = 5 · [11 - 4 - 4] = 5 · (11 - 8) = 5 · 3 = 15

The page provides several challenging exercises that combine various integer operations, requiring careful attention to order of operations and grouping.

Highlight: These problems are excellent practice for ejercicios de números enteros pdf con soluciones (integer exercises with solutions in PDF format), as they cover a wide range of operation combinations.

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Ordering and Comparing Integers

This page focuses on ordering integers and performing basic addition and subtraction operations.

Key concepts:

  • Ordering integers from least to greatest
  • Evaluating true/false statements about integer relationships
  • Adding and subtracting integers

Example: Ordering integers from least to greatest: -24 < -13 < -7 < -1 < 0 < +1 < +5 < +8 < +10

Several practice exercises are provided for mental calculation of integer addition and subtraction.

Highlight: When adding integers with different signs, subtract their absolute values and keep the sign of the larger number.

Vocabulary:

  • Suma (addition)
  • Resta (subtraction)

These concepts are fundamental for more advanced operaciones con números enteros 1 ESO (operations with integers in 1st year of secondary education).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

Practice Exercises

This page provides a comprehensive set of practice exercises covering all the concepts learned in the unit on integers and exponents.

Exercise types include:

  • Basic integer operations
  • Complex multi-step problems
  • Exponent calculations
  • Application of exponent properties

Example: Calculate step by step: 10 ÷ [8 - 12(11 - 9)] = 10 ÷ [8 - 12 · 2] = 10 ÷ (8 - 24) = 10 ÷ (-16) = -5/8

These exercises are designed to reinforce understanding and prepare students for more advanced operaciones con números enteros 2 ESO (operations with integers in 2nd year of secondary education).

Highlight: Practicing these exercises will help students develop proficiency in ejercicios números enteros 1 ESO pdf (integer exercises for 1st year of secondary education in PDF format).

Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<
Jin
UNIDAD 2: LOS NÚMEROS ENTEROS
Z = (... -3, -2,-1.0, 1, 2, 3 ...)
Stiven para expresar temperaturas_negativas, deudas, pro
Ordenación: 2<

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

13 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.