Resolución de Indeterminaciones
Cuando calculas límites, a veces te topas con expresiones que no tienen una respuesta obvia. No te preocupes, cada tipo de indeterminación tiene su método de resolución.
Si obtienes k/0 (un número dividido por cero), el resultado será ±∞. Para saber el signo exacto, calcula los límites laterales y observa si el denominador se acerca a cero por valores positivos o negativos.
La indeterminación 0/0 es muy común y tienes varias opciones. Si no hay raíces, divide numerador y denominador entre x−c o usa la regla de L'Hopital. Cuando aparecen raíces, primero intenta operar y luego dividir entre x−c. Si esto no funciona, multiplica por el conjugado.
Truco importante: La regla de L'Hopital consiste en derivar el numerador y denominador por separado cuando tienes 0/0 o ∞/∞.
Para ∞/∞ en el infinito, fíjate en los grados de los polinomios. Si el numerador tiene mayor grado, el límite es ∞. Si el denominador tiene mayor grado, el límite es 0. Si tienen el mismo grado, divide los coeficientes principales.
Cuando te encuentres con ∞ - ∞ (con grados iguales), opera directamente si no hay raíces, o multiplica por el conjugado si las hay. Para 1^∞, usa la fórmula especial: e^lıˊmitedeg(x)⋅(f(x)−1).