Asignaturas

Asignaturas

Más

Descubre Áreas y Perímetros: Guía Fácil con Ejercicios Resueltos de Figuras Geométricas

Ver

Descubre Áreas y Perímetros: Guía Fácil con Ejercicios Resueltos de Figuras Geométricas

The document provides essential formulas and concepts for geometry, covering áreas y perímetros de figuras geométricas, the Pythagorean theorem, and Thales' theorem. It includes detailed explanations of area and perimeter calculations for various shapes, as well as volume calculations for 3D objects.

• Key topics: Pythagorean theorem, Thales' theorem, area and perimeter formulas, volume calculations
• Shapes covered: Square, rectangle, triangle, rhombus, trapezoid, circle, and regular polygons
• 3D objects: Prisms, spheres, cones, cylinders, and pyramids
• Important concepts: Apothem, radius, height, base area

8/3/2023

2027

FORMULAS
8
1km
*
Hm
= 10
2. ÁREAS Y
Árealak m²
O
Dam
1. TEOREMA DE PITAGORAS
h² = c² + c²
b
m
* Romboide:
P= suma de sus lados (1)
A= b. h
a

Fundamental Geometric Formulas and Theorems

This page introduces crucial geometric concepts and formulas, focusing on áreas y perímetros de figuras geométricas and fundamental theorems.

The Pythagorean theorem is presented, showing the relationship between the sides of a right triangle. The formula h² = c² + c² is given, where h represents the hypotenuse and c the catheti.

Definition: The Pythagorean theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

Thales' theorem is also introduced, though not explicitly defined on this page.

Highlight: Understanding these theorems is crucial for solving more complex geometric problems and is often used in ejercicios resueltos de áreas y perímetros.

The page then provides a comprehensive list of fórmulas de figuras geométricas área y perímetro, including:

  1. Square: Perimeter = sum of sides, Area = l²
  2. Rectangle: Perimeter = sum of sides, Area = b * h
  3. Triangle: Perimeter = sum of sides, Area = (b * h) / 2
  4. Rhomboid: Perimeter = sum of sides, Area = b * h
  5. Rhombus: Perimeter = sum of sides, Area = (D * d) / 2
  6. Trapezoid: Perimeter = sum of sides, Area = ((B + b) * h) / 2
  7. Circle: Circumference = 2πr, Area = πr²
  8. Regular Polygon: Perimeter = sum of sides, Area = (P * a) / 2

Vocabulary: Apothem (a) is the distance from the center of a regular polygon to the midpoint of any side.

The page also includes a diagram showing how to calculate the length of a circle's arc using the formula L = (2πr * α) / 360°, where α represents the central angle in degrees.

Example: To calculate the área de un polígono regular, multiply the perimeter by the apothem and divide by 2. For instance, if a hexagon has a perimeter of 24 cm and an apothem of 3.46 cm, its area would be (24 * 3.46) / 2 = 41.52 cm².

FORMULAS
8
1km
*
Hm
= 10
2. ÁREAS Y
Árealak m²
O
Dam
1. TEOREMA DE PITAGORAS
h² = c² + c²
b
m
* Romboide:
P= suma de sus lados (1)
A= b. h
a

Ver

Areas and Volumes of Geometric Solids

This page expands on the previous concepts, focusing on the calculation of areas and volumes for three-dimensional geometric solids. These formulas are essential for solving ejercicios de áreas y perímetros de figuras geométricas.

The page begins by reminding students to always include units in their calculations, typically m² for area and m³ for volume.

Formulas for various 3D shapes are presented:

  1. Prism:

    • Surface Area = (Perimeter of base * height) + (2 * Area of base)
    • Volume = Area of base * height
  2. Sphere:

    • Surface Area = 4πr²
    • Volume = (4πr³) / 3
  3. Cone:

    • Surface Area = πr(g + r), where g is the slant height
    • Volume = (πr²h) / 3
  4. Cylinder:

    • Surface Area = 2πr(h + r)
    • Volume = Area of base * height
  5. Pyramid:

    • Surface Area = Area of base + (Perimeter of base * slant height) / 2
    • Volume = (Area of base * height) / 3

Highlight: Understanding these formulas is crucial for calculating áreas y volúmenes de figuras geométricas in more complex problems.

The page also includes formulas for circular sectors:

  • Area = (πr² * α) / 360°, where α is the central angle in degrees
  • Arc Length = (2πr * α) / 360°

Example: To calculate the volume of a cone with radius 5 cm and height 12 cm, use the formula V = (πr²h) / 3. Plugging in the values: V = (π * 5² * 12) / 3 ≈ 314.16 cm³.

Lastly, the page provides a reminder about the formula for the circumference of a circle: C = 2πr.

Vocabulary: The slant height (g) of a cone is the distance from the apex to any point on the circumference of the base.

These formulas and concepts are essential for solving a wide range of geometric problems, from basic áreas y perímetros ejercicios to more complex calculations involving three-dimensional shapes.

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

13 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.

Descubre Áreas y Perímetros: Guía Fácil con Ejercicios Resueltos de Figuras Geométricas

The document provides essential formulas and concepts for geometry, covering áreas y perímetros de figuras geométricas, the Pythagorean theorem, and Thales' theorem. It includes detailed explanations of area and perimeter calculations for various shapes, as well as volume calculations for 3D objects.

• Key topics: Pythagorean theorem, Thales' theorem, area and perimeter formulas, volume calculations
• Shapes covered: Square, rectangle, triangle, rhombus, trapezoid, circle, and regular polygons
• 3D objects: Prisms, spheres, cones, cylinders, and pyramids
• Important concepts: Apothem, radius, height, base area

8/3/2023

2027

 

3° ESO

 

Matemáticas

219

FORMULAS
8
1km
*
Hm
= 10
2. ÁREAS Y
Árealak m²
O
Dam
1. TEOREMA DE PITAGORAS
h² = c² + c²
b
m
* Romboide:
P= suma de sus lados (1)
A= b. h
a

Fundamental Geometric Formulas and Theorems

This page introduces crucial geometric concepts and formulas, focusing on áreas y perímetros de figuras geométricas and fundamental theorems.

The Pythagorean theorem is presented, showing the relationship between the sides of a right triangle. The formula h² = c² + c² is given, where h represents the hypotenuse and c the catheti.

Definition: The Pythagorean theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

Thales' theorem is also introduced, though not explicitly defined on this page.

Highlight: Understanding these theorems is crucial for solving more complex geometric problems and is often used in ejercicios resueltos de áreas y perímetros.

The page then provides a comprehensive list of fórmulas de figuras geométricas área y perímetro, including:

  1. Square: Perimeter = sum of sides, Area = l²
  2. Rectangle: Perimeter = sum of sides, Area = b * h
  3. Triangle: Perimeter = sum of sides, Area = (b * h) / 2
  4. Rhomboid: Perimeter = sum of sides, Area = b * h
  5. Rhombus: Perimeter = sum of sides, Area = (D * d) / 2
  6. Trapezoid: Perimeter = sum of sides, Area = ((B + b) * h) / 2
  7. Circle: Circumference = 2πr, Area = πr²
  8. Regular Polygon: Perimeter = sum of sides, Area = (P * a) / 2

Vocabulary: Apothem (a) is the distance from the center of a regular polygon to the midpoint of any side.

The page also includes a diagram showing how to calculate the length of a circle's arc using the formula L = (2πr * α) / 360°, where α represents the central angle in degrees.

Example: To calculate the área de un polígono regular, multiply the perimeter by the apothem and divide by 2. For instance, if a hexagon has a perimeter of 24 cm and an apothem of 3.46 cm, its area would be (24 * 3.46) / 2 = 41.52 cm².

FORMULAS
8
1km
*
Hm
= 10
2. ÁREAS Y
Árealak m²
O
Dam
1. TEOREMA DE PITAGORAS
h² = c² + c²
b
m
* Romboide:
P= suma de sus lados (1)
A= b. h
a

Areas and Volumes of Geometric Solids

This page expands on the previous concepts, focusing on the calculation of areas and volumes for three-dimensional geometric solids. These formulas are essential for solving ejercicios de áreas y perímetros de figuras geométricas.

The page begins by reminding students to always include units in their calculations, typically m² for area and m³ for volume.

Formulas for various 3D shapes are presented:

  1. Prism:

    • Surface Area = (Perimeter of base * height) + (2 * Area of base)
    • Volume = Area of base * height
  2. Sphere:

    • Surface Area = 4πr²
    • Volume = (4πr³) / 3
  3. Cone:

    • Surface Area = πr(g + r), where g is the slant height
    • Volume = (πr²h) / 3
  4. Cylinder:

    • Surface Area = 2πr(h + r)
    • Volume = Area of base * height
  5. Pyramid:

    • Surface Area = Area of base + (Perimeter of base * slant height) / 2
    • Volume = (Area of base * height) / 3

Highlight: Understanding these formulas is crucial for calculating áreas y volúmenes de figuras geométricas in more complex problems.

The page also includes formulas for circular sectors:

  • Area = (πr² * α) / 360°, where α is the central angle in degrees
  • Arc Length = (2πr * α) / 360°

Example: To calculate the volume of a cone with radius 5 cm and height 12 cm, use the formula V = (πr²h) / 3. Plugging in the values: V = (π * 5² * 12) / 3 ≈ 314.16 cm³.

Lastly, the page provides a reminder about the formula for the circumference of a circle: C = 2πr.

Vocabulary: The slant height (g) of a cone is the distance from the apex to any point on the circumference of the base.

These formulas and concepts are essential for solving a wide range of geometric problems, from basic áreas y perímetros ejercicios to more complex calculations involving three-dimensional shapes.

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

13 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.