Asignaturas

Asignaturas

Más

Fun with Logarithms: Problems and Solutions for You!

Ver

Fun with Logarithms: Problems and Solutions for You!
user profile picture

1 bachillerato

@sacandomebachiller

·

22 Seguidores

Seguir

Top estudiante de clase

A comprehensive guide to solving logaritmos y ecuaciones logarítmicas with detailed examples and step-by-step solutions.

  • This collection presents various types of logarithmic equations and their solutions, demonstrating key techniques for solving problemas de logaritmos resueltos
  • Each problem showcases different methods of logarithmic manipulation, from basic equations to complex multi-step solutions
  • The document includes detailed algebraic steps and verifications for each solution
  • Special attention is given to properties of logarithms and their application in problem-solving
  • Multiple solution methods are presented for certain problems, providing alternative approaches to ejercicios de logaritmos con soluciones

14/5/2023

798

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Ver

Page 2: Advanced Logarithmic Equations

This page covers more complex logarithmic equations involving multiple steps and various logarithmic properties. Solutions include equations with different bases and compound logarithmic expressions.

Example: Log x = 3 Log 3 results in x = 27 Definition: When solving logarithmic equations with the same base, the arguments can be set equal to each other. Highlight: The page demonstrates how to handle equations involving logarithms with different bases and multiple terms.

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Ver

Page 3: Logarithmic Equations with Multiple Variables

The third page explores equations involving multiple logarithmic terms and their relationships. It includes problems with logarithms of different expressions set equal to constants.

Example: Log x + Log 20 = 3 leads to x = 500 Vocabulary: The term "Log" without a specified base typically indicates base 10 logarithm Highlight: Solutions involve combining logarithms using logarithm properties and solving resulting algebraic equations

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Ver

Page 4: Complex Logarithmic Problem Solving

This page presents more sophisticated logarithmic equations requiring multiple steps and advanced algebraic manipulation. It includes problems involving quadratic equations resulting from logarithmic manipulation.

Example: 2 Log x - Log (x-16) = 2 transforms into a quadratic equation Highlight: The solutions demonstrate how logarithmic equations often lead to polynomial equations requiring factoring or the quadratic formula

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Ver

Page 5: Advanced Applications of Logarithmic Properties

The fifth page focuses on complex applications of logarithmic properties, including equations with square roots and fractional expressions.

Example: Log √x + 4 - Log 3x = 2log 3 requires careful handling of the square root Highlight: Solutions involve careful manipulation of logarithmic expressions while maintaining valid domain restrictions

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Ver

Page 6: Final Complex Logarithmic Equations

The final page presents the most challenging logarithmic equations, requiring sophisticated problem-solving techniques and careful attention to domain restrictions.

Example: 2 Log x - Log 2x = Log (x-1) leads to a complex algebraic equation Highlight: The solutions demonstrate how complex logarithmic equations can be solved through systematic application of logarithmic properties and algebraic techniques

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Ver

Page 1: Introduction to Basic Logarithmic Equations

This page introduces fundamental logarithmic equations with simple solutions. The focus is on direct application of logarithmic properties.

Example: Log₂ = Log 2, which yields x = 2

Highlight: The page establishes the foundation for more complex logarithmic problem-solving techniques that follow.

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

15 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.

Fun with Logarithms: Problems and Solutions for You!

user profile picture

1 bachillerato

@sacandomebachiller

·

22 Seguidores

Seguir

Top estudiante de clase

A comprehensive guide to solving logaritmos y ecuaciones logarítmicas with detailed examples and step-by-step solutions.

  • This collection presents various types of logarithmic equations and their solutions, demonstrating key techniques for solving problemas de logaritmos resueltos
  • Each problem showcases different methods of logarithmic manipulation, from basic equations to complex multi-step solutions
  • The document includes detailed algebraic steps and verifications for each solution
  • Special attention is given to properties of logarithms and their application in problem-solving
  • Multiple solution methods are presented for certain problems, providing alternative approaches to ejercicios de logaritmos con soluciones

14/5/2023

798

 

4° ESO

 

Matemáticas

29

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Page 2: Advanced Logarithmic Equations

This page covers more complex logarithmic equations involving multiple steps and various logarithmic properties. Solutions include equations with different bases and compound logarithmic expressions.

Example: Log x = 3 Log 3 results in x = 27 Definition: When solving logarithmic equations with the same base, the arguments can be set equal to each other. Highlight: The page demonstrates how to handle equations involving logarithms with different bases and multiple terms.

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Page 3: Logarithmic Equations with Multiple Variables

The third page explores equations involving multiple logarithmic terms and their relationships. It includes problems with logarithms of different expressions set equal to constants.

Example: Log x + Log 20 = 3 leads to x = 500 Vocabulary: The term "Log" without a specified base typically indicates base 10 logarithm Highlight: Solutions involve combining logarithms using logarithm properties and solving resulting algebraic equations

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Page 4: Complex Logarithmic Problem Solving

This page presents more sophisticated logarithmic equations requiring multiple steps and advanced algebraic manipulation. It includes problems involving quadratic equations resulting from logarithmic manipulation.

Example: 2 Log x - Log (x-16) = 2 transforms into a quadratic equation Highlight: The solutions demonstrate how logarithmic equations often lead to polynomial equations requiring factoring or the quadratic formula

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Page 5: Advanced Applications of Logarithmic Properties

The fifth page focuses on complex applications of logarithmic properties, including equations with square roots and fractional expressions.

Example: Log √x + 4 - Log 3x = 2log 3 requires careful handling of the square root Highlight: Solutions involve careful manipulation of logarithmic expressions while maintaining valid domain restrictions

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Page 6: Final Complex Logarithmic Equations

The final page presents the most challenging logarithmic equations, requiring sophisticated problem-solving techniques and careful attention to domain restrictions.

Example: 2 Log x - Log 2x = Log (x-1) leads to a complex algebraic equation Highlight: The solutions demonstrate how complex logarithmic equations can be solved through systematic application of logarithmic properties and algebraic techniques

1
a) Log
2
= Log 2
x = 2
J
HOJA
Scanned with CamScanner b) Log@?)-
c) Log x=510³° × → x= 100000 ✓
✓
d) Log₂
32=X32²2*
x=9
h)(4 Log
(2x-5)
5)

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Page 1: Introduction to Basic Logarithmic Equations

This page introduces fundamental logarithmic equations with simple solutions. The focus is on direct application of logarithmic properties.

Example: Log₂ = Log 2, which yields x = 2

Highlight: The page establishes the foundation for more complex logarithmic problem-solving techniques that follow.

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

15 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.