Asignaturas

Asignaturas

Más

Aprende Asíntotas y Límites: Ejercicios Resueltos y Formulas para 1 Bachillerato y 4 ESO

Ver

Aprende Asíntotas y Límites: Ejercicios Resueltos y Formulas para 1 Bachillerato y 4 ESO

Límites, Continuidad y Asíntotas is a comprehensive guide on limits, continuity, and asymptotes in mathematics. It covers key concepts, formulas, and solved exercises for calculating limits, understanding continuity, and determining asymptotes of functions. The document provides in-depth explanations and examples suitable for high school and early university students studying calculus and mathematical analysis.

• The guide begins with an introduction to limits, explaining their graphical concept and behavior as x approaches infinity.
• It then delves into various types of limits, including polynomial, rational, and irrational functions.
• The document covers important topics like indeterminate forms and techniques to resolve them.
• Continuity of functions and different types of asymptotes are also explored in detail.
• Throughout the guide, numerous solved exercises are provided to illustrate concepts and help students practice.

9/5/2023

3543

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Limits at Specific Points and Continuity

This section discusses limits as x approaches a specific value and introduces the concept of continuity.

Definition: A function f(x) is continuous at a point a if:

  1. f(a) is defined
  2. lim f(x) exists as x → a
  3. lim f(x) = f(a) as x → a

The page explains how to calculate one-sided limits (left-hand and right-hand limits) and their importance in determining the existence of a limit at a point.

Example: For the function f(x) = |x-2|/x-2, calculate the limits as x approaches 2 from both sides to determine if the limit exists.

The document provides several exercises demonstrating how to calculate limits at specific points and determine the continuity of functions.

Highlight: The existence and equality of left-hand and right-hand limits are crucial for determining the continuity of a function at a point.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Introduction to Limits

This page introduces the concept of limits and their graphical representation. It focuses on the behavior of functions as x approaches positive or negative infinity.

Definition: A limit describes the value that a function approaches as the input (usually x) gets closer to a specific value.

The page presents different scenarios for limits:

  1. When the function approaches a finite value (a) as x tends to infinity
  2. When the function approaches positive or negative infinity
  3. When the function oscillates without approaching a specific value

Example: lim (x³-4) = ∞ as x → ∞ x→∞

The document also provides several solved exercises for calculating limits, demonstrating the substitution method and handling basic indeterminate forms.

Highlight: For polynomial functions, as x approaches infinity, the behavior is determined by the highest degree term.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Rational Function Limits and Indeterminate Forms

This page focuses on limits of rational functions, particularly those leading to indeterminate forms like 0/0.

The document outlines a step-by-step approach for handling such limits:

  1. Substitute the x-value into the function
  2. If an indeterminate form results, factor the numerator and denominator
  3. Cancel common factors
  4. Substitute the x-value again

Example: lim (x²-5x+6)/(x²+3x-10) as x → 2 x→2

The page provides several solved exercises demonstrating this technique for various rational functions.

Highlight: When dealing with rational functions, factoring and cancelling common terms is often key to resolving indeterminate forms.

The document also briefly introduces the concept of asymptotes, particularly vertical asymptotes that occur when the denominator of a rational function approaches zero while the numerator doesn't.

Vocabulary: An asymptote is a line that a curve approaches but never quite reaches.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Indeterminate Forms and Calculation Techniques

This section delves deeper into the calculation of limits, focusing on indeterminate forms and techniques to resolve them.

Vocabulary: Indeterminate forms are expressions that arise when calculating limits and can potentially take any value. Common indeterminate forms include ∞-∞, ∞/∞, and 0/0.

The page outlines several techniques for calculating limits:

  1. For polynomial functions (∞-∞ indeterminate form), use the highest degree term.
  2. For rational functions (∞/∞ indeterminate form), apply the rule of degrees.
  3. For irrational functions, manipulate the expression to resolve the indeterminacy.

Example: lim (x³-7x²-x) = lim x³ = ∞ x→∞ x→∞

The document provides numerous solved exercises for each type of function and indeterminate form, offering step-by-step solutions to help students understand the process.

Highlight: When dealing with rational functions, the relationship between the degrees of the numerator and denominator determines the limit's behavior as x approaches infinity.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Advanced Limit Techniques

This page focuses on more advanced techniques for calculating limits, particularly for complex rational and irrational functions.

For rational functions with the ∞/∞ indeterminate form, the document introduces the rule of degrees:

  1. If degree of numerator > degree of denominator, limit = ±∞
  2. If degree of numerator = degree of denominator, limit = ratio of leading coefficients
  3. If degree of numerator < degree of denominator, limit = 0

Example: lim (x³-4x²)/(4-x) = -1 (applying rule 1) x→∞

For irrational functions, the page demonstrates techniques such as multiplying by the conjugate and simplifying:

Example: lim (√(x²+4x) - x) = lim (x²+4x - x²)/(√(x²+4x) + x) = 2 x→∞

The document also covers limits of exponential and trigonometric functions as x approaches specific values or infinity.

Highlight: When dealing with irrational functions, multiplying by the conjugate is a key technique to resolve indeterminate forms.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Conclusion and Practice Exercises

The final page of the document provides a summary of the key concepts covered and offers a set of practice exercises for students to apply their understanding of limits.

Highlight: Regular practice with a variety of limit problems is essential for mastering the techniques and developing intuition about function behavior.

The practice exercises cover various types of limits, including:

  • Limits of polynomial functions
  • Limits of rational functions
  • Limits involving square roots
  • Limits as x approaches specific values
  • Limits as x approaches infinity

Example: Calculate lim (x²-2x)(x-3)/(x-3) as x → 3

These exercises are designed to reinforce the concepts and techniques presented throughout the document, providing students with opportunities to apply their knowledge and improve their problem-solving skills in calculus.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Ver

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

13 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.

Aprende Asíntotas y Límites: Ejercicios Resueltos y Formulas para 1 Bachillerato y 4 ESO

Límites, Continuidad y Asíntotas is a comprehensive guide on limits, continuity, and asymptotes in mathematics. It covers key concepts, formulas, and solved exercises for calculating limits, understanding continuity, and determining asymptotes of functions. The document provides in-depth explanations and examples suitable for high school and early university students studying calculus and mathematical analysis.

• The guide begins with an introduction to limits, explaining their graphical concept and behavior as x approaches infinity.
• It then delves into various types of limits, including polynomial, rational, and irrational functions.
• The document covers important topics like indeterminate forms and techniques to resolve them.
• Continuity of functions and different types of asymptotes are also explored in detail.
• Throughout the guide, numerous solved exercises are provided to illustrate concepts and help students practice.

9/5/2023

3543

 

1° Bach

 

Matemáticas I

405

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Limits at Specific Points and Continuity

This section discusses limits as x approaches a specific value and introduces the concept of continuity.

Definition: A function f(x) is continuous at a point a if:

  1. f(a) is defined
  2. lim f(x) exists as x → a
  3. lim f(x) = f(a) as x → a

The page explains how to calculate one-sided limits (left-hand and right-hand limits) and their importance in determining the existence of a limit at a point.

Example: For the function f(x) = |x-2|/x-2, calculate the limits as x approaches 2 from both sides to determine if the limit exists.

The document provides several exercises demonstrating how to calculate limits at specific points and determine the continuity of functions.

Highlight: The existence and equality of left-hand and right-hand limits are crucial for determining the continuity of a function at a point.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Introduction to Limits

This page introduces the concept of limits and their graphical representation. It focuses on the behavior of functions as x approaches positive or negative infinity.

Definition: A limit describes the value that a function approaches as the input (usually x) gets closer to a specific value.

The page presents different scenarios for limits:

  1. When the function approaches a finite value (a) as x tends to infinity
  2. When the function approaches positive or negative infinity
  3. When the function oscillates without approaching a specific value

Example: lim (x³-4) = ∞ as x → ∞ x→∞

The document also provides several solved exercises for calculating limits, demonstrating the substitution method and handling basic indeterminate forms.

Highlight: For polynomial functions, as x approaches infinity, the behavior is determined by the highest degree term.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Rational Function Limits and Indeterminate Forms

This page focuses on limits of rational functions, particularly those leading to indeterminate forms like 0/0.

The document outlines a step-by-step approach for handling such limits:

  1. Substitute the x-value into the function
  2. If an indeterminate form results, factor the numerator and denominator
  3. Cancel common factors
  4. Substitute the x-value again

Example: lim (x²-5x+6)/(x²+3x-10) as x → 2 x→2

The page provides several solved exercises demonstrating this technique for various rational functions.

Highlight: When dealing with rational functions, factoring and cancelling common terms is often key to resolving indeterminate forms.

The document also briefly introduces the concept of asymptotes, particularly vertical asymptotes that occur when the denominator of a rational function approaches zero while the numerator doesn't.

Vocabulary: An asymptote is a line that a curve approaches but never quite reaches.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Indeterminate Forms and Calculation Techniques

This section delves deeper into the calculation of limits, focusing on indeterminate forms and techniques to resolve them.

Vocabulary: Indeterminate forms are expressions that arise when calculating limits and can potentially take any value. Common indeterminate forms include ∞-∞, ∞/∞, and 0/0.

The page outlines several techniques for calculating limits:

  1. For polynomial functions (∞-∞ indeterminate form), use the highest degree term.
  2. For rational functions (∞/∞ indeterminate form), apply the rule of degrees.
  3. For irrational functions, manipulate the expression to resolve the indeterminacy.

Example: lim (x³-7x²-x) = lim x³ = ∞ x→∞ x→∞

The document provides numerous solved exercises for each type of function and indeterminate form, offering step-by-step solutions to help students understand the process.

Highlight: When dealing with rational functions, the relationship between the degrees of the numerator and denominator determines the limit's behavior as x approaches infinity.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Advanced Limit Techniques

This page focuses on more advanced techniques for calculating limits, particularly for complex rational and irrational functions.

For rational functions with the ∞/∞ indeterminate form, the document introduces the rule of degrees:

  1. If degree of numerator > degree of denominator, limit = ±∞
  2. If degree of numerator = degree of denominator, limit = ratio of leading coefficients
  3. If degree of numerator < degree of denominator, limit = 0

Example: lim (x³-4x²)/(4-x) = -1 (applying rule 1) x→∞

For irrational functions, the page demonstrates techniques such as multiplying by the conjugate and simplifying:

Example: lim (√(x²+4x) - x) = lim (x²+4x - x²)/(√(x²+4x) + x) = 2 x→∞

The document also covers limits of exponential and trigonometric functions as x approaches specific values or infinity.

Highlight: When dealing with irrational functions, multiplying by the conjugate is a key technique to resolve indeterminate forms.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

Conclusion and Practice Exercises

The final page of the document provides a summary of the key concepts covered and offers a set of practice exercises for students to apply their understanding of limits.

Highlight: Regular practice with a variety of limit problems is essential for mastering the techniques and developing intuition about function behavior.

The practice exercises cover various types of limits, including:

  • Limits of polynomial functions
  • Limits of rational functions
  • Limits involving square roots
  • Limits as x approaches specific values
  • Limits as x approaches infinity

Example: Calculate lim (x²-2x)(x-3)/(x-3) as x → 3

These exercises are designed to reinforce the concepts and techniques presented throughout the document, providing students with opportunities to apply their knowledge and improve their problem-solving skills in calculus.

Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y
Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y
Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y
Limites, continuidad y.
asíntotas
Límites.
concepto gráfico cuando x α +∞
vamos a estudiar el comportamiento de la función, de donde viene y

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

13 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.