Asignaturas

Asignaturas

Más

Campo Magnético: Fórmulas y Ejemplos para 2º de Bachillerato

Ver

Campo Magnético: Fórmulas y Ejemplos para 2º de Bachillerato

The campo magnético (magnetic field) is a fundamental concept in physics, describing the force exerted on moving charged particles. This summary explores key formulas, examples, and applications of magnetic fields in various contexts.

Campo magnético fórmula y ejemplos:

  • A single charge q creates a magnetic field B at distance r: B = (μ₀qv × r̂) / (4πr²)
  • For an infinite wire: B = (μ₀I) / (2πr)
  • For a circular loop: B = (μ₀I) / (2R)
  • For a solenoid: B = (μ₀NI) / l

Key concepts include the Biot-Savart Law, Lorentz Force, and electromagnetic induction. The document covers applications such as cyclotrons, parallel conductors, and alternating current generation.

25/2/2023

1515

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Ver

Magnetic Field Applications

This page delves into specific applications and phenomena related to magnetic fields.

The cyclotron, a type of particle accelerator, is discussed in detail:

Example: In a cyclotron, charged particles move in circular paths due to the Lorentz force. The frequency of rotation is given by f = (qB) / (2πm).

The page also covers the interaction between parallel conductors carrying currents:

Formula: The force per unit length between two parallel conductors is given by |F₁₂| = (μ₀I₁I₂) / (2πd).

Electromagnetic induction, a crucial concept in electromagnetism, is introduced:

Definition: Electromagnetic induction is the production of an electromotive force (EMF) across an electrical conductor in a changing magnetic field.

The formula for induced EMF in alternating current generation is presented:

Formula: ε = NBSω sin(ωt)

where N is the number of turns, B is the magnetic field strength, S is the area, and ω is the angular frequency.

The page concludes with discussions on magnetic flux and Ohm's law in the context of magnetic fields.

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Ver

Electromagnetic Induction Exercises

This page focuses on practical exercises and examples related to electromagnetic induction.

The first exercise demonstrates how to calculate the rate of change of magnetic flux and the induced EMF:

Example: Given a circular coil with 100 turns and a radius of 0.05m in a magnetic field of 0.24T, the magnetic flux is calculated as Φ = BS cos α. The change in flux over time leads to an induced EMF of 3.768 V.

The page emphasizes that a changing magnetic flux is necessary to induce an EMF:

Highlight: If the magnetic flux (BS) does not change, no EMF is induced.

A graphical representation shows the relationship between time and induced EMF, illustrating how the EMF varies sinusoidally in certain scenarios.

The exercises also cover cases where the magnetic field changes as a function of time, requiring the use of calculus to determine the induced EMF:

Formula: ε = -N(dΦ/dt) = -N(d/dt)(BS cos α)

These examples help students understand the practical applications of electromagnetic induction formulas and concepts.

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Ver

Advanced Electromagnetic Induction

This final page covers more complex scenarios in electromagnetic induction, particularly focusing on rotating coils and moving conductors.

For a rotating coil (as in an AC generator), the induced EMF is given by:

Formula: ε = NBSω sin(ωt)

An example problem is presented:

Example: A coil with 10 turns, area 0.3m², rotating at 120 rpm in a 0.1T magnetic field. The maximum EMF is calculated to be 3.771 V.

The page also discusses Henry's experiment, which demonstrates induction in a moving conductor:

Formula: ε = Blv

where B is the magnetic field strength, l is the length of the conductor, and v is its velocity.

The relationship between induced EMF and current is explored using Ohm's law:

Formula: I = V/R

Finally, the page emphasizes that the induced EMF always opposes the change in magnetic flux, a principle known as Lenz's law.

Highlight: The induced EMF always opposes the change in magnetic flux that causes it.

These advanced concepts and examples provide a comprehensive understanding of electromagnetic induction and its applications in various scenarios.

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Ver

Magnetic Field Overview

This page introduces the fundamental concepts of magnetic fields, their causes, and key formulas.

The campo magnético (magnetic field) is created by moving charges or currents. The page presents formulas for calculating magnetic fields in various scenarios:

Definition: The magnetic field B created by a single charge q moving with velocity v at a distance r is given by the formula B = (μ₀qv × r̂) / (4πr²).

For different configurations, the following formulas are provided:

  1. Infinite wire: B = (μ₀I) / (2πr)
  2. Circular loop: B = (μ₀I) / (2R)
  3. Square loop: Fields are summed or subtracted based on current direction
  4. Solenoid: B = (μ₀NI) / l

Highlight: The Biot-Savart Law is a fundamental principle for calculating magnetic fields created by current-carrying conductors.

The page also introduces the Lorentz Force, which describes the interaction between a magnetic field and a moving charge or current:

Formula: F = qv × B

This force is responsible for the circular motion of charged particles in magnetic fields, a principle used in devices like cyclotrons.

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

15 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.

Campo Magnético: Fórmulas y Ejemplos para 2º de Bachillerato

The campo magnético (magnetic field) is a fundamental concept in physics, describing the force exerted on moving charged particles. This summary explores key formulas, examples, and applications of magnetic fields in various contexts.

Campo magnético fórmula y ejemplos:

  • A single charge q creates a magnetic field B at distance r: B = (μ₀qv × r̂) / (4πr²)
  • For an infinite wire: B = (μ₀I) / (2πr)
  • For a circular loop: B = (μ₀I) / (2R)
  • For a solenoid: B = (μ₀NI) / l

Key concepts include the Biot-Savart Law, Lorentz Force, and electromagnetic induction. The document covers applications such as cyclotrons, parallel conductors, and alternating current generation.

25/2/2023

1515

 

2° Bach

 

Física

86

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Magnetic Field Applications

This page delves into specific applications and phenomena related to magnetic fields.

The cyclotron, a type of particle accelerator, is discussed in detail:

Example: In a cyclotron, charged particles move in circular paths due to the Lorentz force. The frequency of rotation is given by f = (qB) / (2πm).

The page also covers the interaction between parallel conductors carrying currents:

Formula: The force per unit length between two parallel conductors is given by |F₁₂| = (μ₀I₁I₂) / (2πd).

Electromagnetic induction, a crucial concept in electromagnetism, is introduced:

Definition: Electromagnetic induction is the production of an electromotive force (EMF) across an electrical conductor in a changing magnetic field.

The formula for induced EMF in alternating current generation is presented:

Formula: ε = NBSω sin(ωt)

where N is the number of turns, B is the magnetic field strength, S is the area, and ω is the angular frequency.

The page concludes with discussions on magnetic flux and Ohm's law in the context of magnetic fields.

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Electromagnetic Induction Exercises

This page focuses on practical exercises and examples related to electromagnetic induction.

The first exercise demonstrates how to calculate the rate of change of magnetic flux and the induced EMF:

Example: Given a circular coil with 100 turns and a radius of 0.05m in a magnetic field of 0.24T, the magnetic flux is calculated as Φ = BS cos α. The change in flux over time leads to an induced EMF of 3.768 V.

The page emphasizes that a changing magnetic flux is necessary to induce an EMF:

Highlight: If the magnetic flux (BS) does not change, no EMF is induced.

A graphical representation shows the relationship between time and induced EMF, illustrating how the EMF varies sinusoidally in certain scenarios.

The exercises also cover cases where the magnetic field changes as a function of time, requiring the use of calculus to determine the induced EMF:

Formula: ε = -N(dΦ/dt) = -N(d/dt)(BS cos α)

These examples help students understand the practical applications of electromagnetic induction formulas and concepts.

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Advanced Electromagnetic Induction

This final page covers more complex scenarios in electromagnetic induction, particularly focusing on rotating coils and moving conductors.

For a rotating coil (as in an AC generator), the induced EMF is given by:

Formula: ε = NBSω sin(ωt)

An example problem is presented:

Example: A coil with 10 turns, area 0.3m², rotating at 120 rpm in a 0.1T magnetic field. The maximum EMF is calculated to be 3.771 V.

The page also discusses Henry's experiment, which demonstrates induction in a moving conductor:

Formula: ε = Blv

where B is the magnetic field strength, l is the length of the conductor, and v is its velocity.

The relationship between induced EMF and current is explored using Ohm's law:

Formula: I = V/R

Finally, the page emphasizes that the induced EMF always opposes the change in magnetic flux, a principle known as Lenz's law.

Highlight: The induced EMF always opposes the change in magnetic flux that causes it.

These advanced concepts and examples provide a comprehensive understanding of electromagnetic induction and its applications in various scenarios.

RESUMEN: CAMPO MAGNÉTICO
Causa de un campo
• Una carga (9) crea, a una distancia (r), un campo magnético (B).
JS MOTOR
*μ. = 4₁107
una sola

Inscríbete para ver los apuntes. ¡Es gratis!

Acceso a todos los documentos

Mejora tus notas

Únete a millones de estudiantes

Al registrarte aceptas las Condiciones del servicio y la Política de privacidad.

Magnetic Field Overview

This page introduces the fundamental concepts of magnetic fields, their causes, and key formulas.

The campo magnético (magnetic field) is created by moving charges or currents. The page presents formulas for calculating magnetic fields in various scenarios:

Definition: The magnetic field B created by a single charge q moving with velocity v at a distance r is given by the formula B = (μ₀qv × r̂) / (4πr²).

For different configurations, the following formulas are provided:

  1. Infinite wire: B = (μ₀I) / (2πr)
  2. Circular loop: B = (μ₀I) / (2R)
  3. Square loop: Fields are summed or subtracted based on current direction
  4. Solenoid: B = (μ₀NI) / l

Highlight: The Biot-Savart Law is a fundamental principle for calculating magnetic fields created by current-carrying conductors.

The page also introduces the Lorentz Force, which describes the interaction between a magnetic field and a moving charge or current:

Formula: F = qv × B

This force is responsible for the circular motion of charged particles in magnetic fields, a principle used in devices like cyclotrons.

¿No encuentras lo que buscas? Explora otros temas.

Knowunity es la app educativa nº 1 en cinco países europeos

Knowunity fue un artículo destacado por Apple y ha ocupado sistemáticamente los primeros puestos en las listas de la tienda de aplicaciones dentro de la categoría de educación en Alemania, Italia, Polonia, Suiza y Reino Unido. Regístrate hoy en Knowunity y ayuda a millones de estudiantes de todo el mundo.

Ranked #1 Education App

Descargar en

Google Play

Descargar en

App Store

Knowunity es la app educativa nº 1 en cinco países europeos

4.9+

valoración media de la app

15 M

A los alumnos les encanta Knowunity

#1

en las listas de aplicaciones educativas de 12 países

950 K+

alumnos han subido contenidos escolares

¿Aún no estás convencido? Mira lo que dicen tus compañeros...

Usuario de iOS

Me encanta esta app [...] ¡¡¡Recomiendo Knowunity a todo el mundo!!! Pasé de un 2 a un 9 con él :D

Javi, usuario de iOS

La app es muy fácil de usar y está muy bien diseñada. Hasta ahora he encontrado todo lo que estaba buscando y he podido aprender mucho de las presentaciones.

Mari, usuario de iOS

Me encanta esta app ❤️, de hecho la uso cada vez que estudio.